Thursday, August 22, 2019

Émilie du Châtelet and the Foundations of Physics

Émilie du Châtelet linocut, 11" x 14", by Ele Willoughby, 2019

This is a hand-printed portrait of Gabrielle Émilie Le Tonnelier de Breteuil, Marquise du Châtelet (1706-1749), a natural philosopher, mathematician and physicist, inspired by contemporary portraits, and shows her along with her diagrams. Each 11" x14" (27.9 cm x 35.6 cm) linocut print is printed on lovely, delicate, Japanese paper. The diagrams are from Principes Mathématiques de la Philosophie Naturelle, a two-volume translation and commentary of Newton’s Principia, published in 1759 in French in Paris.

While historically she was merely remembered as Voltaire's lover, she in fact was not only responsible for all his ideas about physics but was the first to postulate the conservation of total energy (which includes kinetic and other forms of energy combined). Further, she found the relationship between kinetic energy, mass and velocity of an object. Before translating Newton, she published her magnum opus Institutions de Physique (or Foundations of Physics) in 1740 and within a mere two years it had been translated into many languages and republished. Debate raged at the time about how the measure the force of an object and how to formulate conservation principles. She was an active participant in this dispute known as the vis viva debate. There was a schism between the Newtonians in England and the continental philosophers who followed Leibniz, particularly in German-speaking regions; she wanted the best of both while contemporaries viewed Newton and Leibniz' work as fundamentally opposed interpretations of the world. Institutions de Physique covered philosophy, space, time, matter, laws of nature and gravity including Galileo's results and Newton's more general work. In Principes Mathématiques de la Philosophie Naturelle, she combined Newton's text with Leibniz' more elegant formulation of calculus, pushing physics forward. She was recognized during her lifetime by the greatest thinkers of the day including renowned mathematicians such as Johann II Bernoulli and Leonhard Euler, her works were translated into other languages and discussed in scholarly journals and represented in (or even plagerized by) the Encyclopédie of Denis Diderot and Jean le Rond D'Alembert. She made a large impact on contemporary physics and philosophy.

Fronstispiece from Algorotti's
Il Newtonianismo Per Le Dame, 1737 Venice
After much goading and many years, Newton finally published the bulk of his understanding of mechanics and his famous three laws in Philosophiæ Naturalis Principia Mathematica, known simply as the Principia, in 1687 with two further corrected editions in in 1713 and 1726. As the title implies, the text is written in Latin. Though he had to derive the concepts of calculus to complete the work, it's largely absent from the text in favour of the geometrical approaches to infinitessimal calculus. So Émilie du Châtelet's work does not simply represent a translation - she reorganized the work using Leibniz' calculus, wrote commentaries and explanations and most importantly, added her own discoveries about kinetic energy. To this day, du Châtelet's version is the standard French translation of the Principia and modern translators still rely on Émilie's translation.

She taught herself mathematics, and then was tutored in algebra and calculus by Moreau de Maupertuis, a member of the Academy of Sciences (who had been trained by mathematician Johann Bernoulli, who also taught Leonhard Euler).  Then she turned to his protégé mathematician Alexis Clairaut, author of Clairaut's equation and Clairaut's theorem, who became a life-long friend, and other top French mathematicians. On one occassion she was ejected from Café Gradot, where men held intellectual discussions, for being a woman. So, she had some men's clothing made and boldly returned. She became a world authority on Newtonian mechanics, at a time when few imagined a woman capable or even interested in such a thing. Émilie's impact on continental physics, and bringing Newton's Principia to Europe (and to those in England more able to read French than Latin) cannot be overstated.

She was aristocrat who not only dedicated herself to knowledge, writing about physics and experimentation, she enjoyed clothing and could be extravagant. She loved fashion, gambling and jewellery.  She used her mathematics ability to devise successful gambling techniques, when she needed money for books as a teen. Voltaire was known to call her Madame Newton-Pompom-du Châtelet for the pompoms she wore. His own writings on physics were written in collaboration with her and often quoted her word for word. It wasn't long before her skills and interest far exceeded his own. She had some insight into the relationship between light, colour and heat, long before a modern understanding of energy. At the time, scholars debated whether kinetic energy or momentum was the pertinent thing - we now know that both are important, yet distinct. She leaned towards Leibniz' ideas on the subject, which shows how she was at the cutting edge of contemporary physics knowledge and debate.

She translated Mandeville's The Fable of the Bees into French and used the preface to denounce the prejudice that prevented women from access to a proper education. Nonetheless, a product of her time, she focused more on her daughter's marriage prospects and her son's education. She had to fight to be taken seriously and deal with sexism from even the well-meaning; she and contemporary part-time Bolognese physics professor Laura Bassi were not impressed when their friend Algarotti wrote a rather patronizing popularization of Newton's physics called (I wish I were kiding) Newtonianism for the Ladies. Worse, the frontispiece of his book shows a man speaking to a lady who suspiciously ressembles du Châtelet, implying he had explained Newtonianism to her. Her short-term mathematics tutor Samuel König, a student fo Mauterpuis, also tried to undermine her by claiming responsibility for Institutions de Physique. This lead to her estrangement from Mauterpuis. Ironically König later fell out with Euler and accused Mauterpuis of having plagerized him.

The story of her long-lasting relationship with Voltaire is quite fascinating, a relationship she pursued with the knowledge and blessing of her husband, Marquis Florent-Claude du Chastellet-Lomont (Châtelet is the modernized spelling of Chastellet). She first met Voltaire as a child at one of her father's salons. They became close when she re-entered society after the birth of her children. She invited Voltaire to live at their country house, a refuge for him when he was in disfavour, and there they worked together on their publications and set up a lab. They both submitted essays to the 1738 Paris Academy prize contest on the nature of fire; neither won (they lost to Euler) but they both earned honourable mention and their essays were published by the Academy. Hence, du Châtelet because the first woman to have a scientific paper published by the Academy. Eventually their relationship became a comfortable, platonic collaboration. At age 42, she began a new affair with the poet Jean François de Saint-Lambert. She feared she could not survive her subsequent unplanned pregnancy. Six days after the birth of a daughter, on 10 September 1749, at Lunéville, she suffered a fatal pulmonary embolism. Voltaire, her husband and final lover Saint-Lambert were all at her bedside with she died.

Project Vox, Duke University, accessed August, 2019
Émilie du Châtelet, Wikipedia, accessed August, 2019
Philosophiæ Naturalis Principia Mathematica, Wikipedia, accessed August, 2019
Robyn Arianrhod, Seduced by Logic: Émilie du Châtelet, Mary Sommerville and the Newtonian Revolution, Oxford University Press, 2012
Cynthia J. Huffman, Mathematical Treasure: Émilie du Châtelet’s Principes Mathématiques, Convergence (January 2017)

Thursday, August 15, 2019

Ancient Korean Astronomer Queen - Queen Seondeok of Silla

Queen Seondeok of Silla, linocut with chine collé, 9.25" x 12.5", 2019 by Ele Willoughby 
This handprinted lino block print is a portrait of Queen Seondeok of Silla or 선덕여왕 sometimes written Sonduk or Sondok (c. 595 ~ 610 - 647), reigned as 27th ruler of Silla, one of the Three Kingdoms of Korea, from 632-647, who brought about a rise in Buddhism and a renaissance in culture and science as well as building the Cheomseongdae moon and star-gazing observatory. Each print is printed on Japanese papers, and is 12.5 inches by 9.25 inches (31.7 cm by 23.5 cm).

Known for her intelligence, wisdom and benevolence, stories survive of her curiosity and cleverness even as a child. When her father the King was gifted peony seeds and a painting of peonies from China she remarked that it was a pity the lovely flowers had no scent. The astonished adults asked her how she knew; she had noted that the painting of the flower did not show bees or butterflies and had corrected deduced that they were unscented. One story recounts how she predicted an attack from the neighbouring Baekche kingdom by noting the sounds of frogs at the gate.

She was introduced to astronomy by her tutor and tried to discuss it with the Chinese ambassador but was rebuffed as Confucianism discouraged educating women. Then she predicted the occurrence and duration of a solar eclipse which angered him and he persuaded her father to stop her studies. Seondeok wrote the following on a votive jar dedicated to her grandmother:

Will I ever know the truth about the stars?

I’m too young to engage in theories about our Universe.

I just know that I want to understand more. I want to know all

I can. Why should it be forbidden?*

But when her father died without a male heir she became Queen as the first female sovereign in ancient Korea. During this turbulent time, the southern Korean peninsula was divided into three competing kingdoms of Silla, Goguryeo and Baekche and Seondeok was able to combine diplomacy, forging alliances with Tang China, with military might to weather rebellion and threats from other her neighbours during her reign. After lifting peasants’ taxes for a year and helping orphans and elderly, she set to work building a 9m tall moon and star-gazing tower Cheomseogdae. The bottle-shaped stone observatory still survives today, and is the oldest standing observatory in East Asia, and perhaps the world. The capital became a centre of culture and science; mathematics, astronomy and astrology flourished. The observatory is believed to have been the centre of an entire scientific district.

The building itself represented knowledge; the number of stones represents days of the year (scholars differ on whether it contains 362 or 365 large stones representing days in the solar or lunar year). The stones appear in 27 courses (for Seondeok, the 27th ruler) with 12 courses above and below the window entrance for the months of the year and these sum to 24, the number of solar terms in a year (24 points in traditional East Asian lunisolar calendars that matches a particular astronomical event or signifies some natural phenomenon). Including the stylobate, or platform on which it was built, gives 28 courses and 28 symbolizes the 28 constellations of East Asia. The addition of the two-tier top brings us to 30, the number of days in a month. The tower itself is a gnomon of a sundial and the window captures the sun’s rays on the interior floor at spring and autumn equinoxes. Astronomy was of vital importance as it governed agriculture and contemporary scientists produced detailed star charts. Astrology influenced political decisions of the day. Thus observations at Cheomseongdae were of utmost importance to Silla.

*Gabriella Bernardi, 'The unforgotten sisters: Sonduk, the astronomer queen.' Cosmos magazine, 28 March 2018

Hong-Jin Yang, 'Historical Astronomy of Korea', Korean Astronomy Olympiad, Korean Astronomical Society, 2012

K.P.Kulski, 'The Tower of the Moon and Stars: Queen Seondeok of Silla,' Unbound, 2017

Mark Cartwright, Cheomsongdae, Ancient History Encyclopedia, 2016

Mark Cartwright, Queen Seondeok, Ancient History Encyclopedia, 2016

Queen Seondeok of Silla, wikipedia, accessed August, 2019

Cheomseongdae, wikipedia, accessed August, 2019

Category of Astronomical Heritage: tangible immovableCheomseongdae observatory, Republic of Korea, UNESCO Portal to the Heritage of Astronomy, accessed August, 2019

Wednesday, May 22, 2019

Cecilia Payne-Gaposchkin and the Most Abundant Elements in the Sun, Stars and Universe

Cecilia Payne-Gaposchkin, linocut 9.25" x 12.5" on ivory kozo paper by Ele Willoughby 2019
This is a 9.25" x 12.5" (23.5 cm by 31.7 cm) 3-layer linocut print on ivory Japanese kozo (or mulberry paper) showing the great astrophysicist Cecilia Payne-Gaposchkin in front of the sun with a solar absorption spectrum. Cecilia Payne-Gaposchkin (1900-1979) was a trailblazer for women in astronomy and discovered that hydrogen and helium are the most common elements in the universe.

For the first quarter of twentieth century, astronomers believed that Earth and Sun were much the same, made of the same distribution of elements, differentiated only by temperature. Nuclear fusion, the source of solar energy had yet to be discovered, and scientists looked at the entire spectrum of light emitted to try and determine the nature of star stuff. Physicists were beginning to use spectroscopy to identify the elements of which things are made. It turns out that with stars, which are hot and full of excited atoms, rather than emission spectra, it is absorption spectra, like rainbows crossed with bar codes, which are the most useful. Light is emitted from stars at a broad range of frequencies (and those within the visible range we see as different colours), but there are specific stripes which are missing (or absorbed) because they exactly match the energy difference between two quantum mechanical states of their constituent atoms.  Each element has its own ‘bar code’ of absorption lines. The lines of common metals like silicon and carbon are seen in the sun’s absorption spectrum which lead scientists to think it star stuff was the same as Earth stuff.

Born in Wendover, England, in 1900, Cecilia Payne was one of three children raised by her mother Emma Leonora Helena (née Pertz) after the death of her father, barrister and historian Edward John Payne, when she was only four. She attended St. Paul’s Girls’ School and won a scholarship to Newnham College at Cambridge to read botany, physics and chemistry in 1919. She was disappointed by botany, but found phyics a "pure delight". The department at Cambridge at this time included such luminaries as J.J. Thomson, Rutherford, C.T.R. Wilson, Chadwick and Bohr. This marked the year a lecture changed her life. So impressed, she later wrote out the lecture word for word correctly, comparing it against his published text. She wrote, “My world had been so shaken that I experienced something very like a nervous breakdown.” It was no everyday lecture. She had gone to hear Sir Arthur Eddington’s account of his 1919 expedition to the island of Principe off the west coast of Africa to photograph stars with apparent positions near the sun during the solar eclipse. Eddington had produced the first experimental evidence supporting Einstein’s revolutionary General Theory of Relativity, which predicted that large masses like the sun would bend spacetime itself and that gravity would bend light changing apparent position of stars. Cecilia Payne’s imagination was captured by astronomy. She completed her studies but Cambridge did not grant women degrees until 1948 and her only option in the UK would be to become a teacher. She met Arthur Shapley, Director of the Harvard College Observatory who had just established a graduate program. Thanks to a fellowship to encourage women to study at the observatory she left the US to pursue graduate school in the US.  With Shapley’s encouragement she became the first PhD in astronomy at Radcliffe College (which is now part of Harvard).

Her 1925 thesis was "Stellar Atmospheres; a Contribution to the Observational Study of High Temperature in the Reversing Layers of Stars." Indian physicist Meghnad Saha had recently developed his ionization theory, which relates the ionization state of a gas in thermal equilibrium to the temperature and pressure. That is, he explained how those stellar “bar codes” due to ionized gas in stars relates to their temperature and pressure. Astrophysicists use the phrase “to Saha correctly” now to describe the process of interpreting stellar atmospheres. Cecilia Payne was able to Saha correctly on the Harvard collection of stellar spectra; she showed that variations in absorption lines were related to ionization state and temperature, rather than the various amounts of elements. She found the abundances of silicon and carbon were just like here on Earth, as expected, but that hydrogen and helium were vastly more abundant. Hydrogen in fact was a million times more abundant! This meant it was the most abundant element in the universe. This seemed too astonishing to be true. When defending her thesis, astronomer Henry Norris Russell, swayed by the theories of American physicist Henry Rowland, convinced her that this result was spurious. But she was right and they were wrong. Within a few years astronomer Otto Struve described her work as "the most brilliant PhD thesis ever written in astronomy" and Russell himself found independent evidence of her result. Russell published his result and though he acknowledged Payne he was often wrongly credited with this discovery.

After her doctorate, she looked at the structure of the Milky Way by studying high luminosity supergiant stars, discovering many of their unusual properties including exotic ions in their spectra. Shapley suggested that she work on photographic stellar photometry which required meticulous work to establish standard stellar magnitudes and colours. She chafed under this time-consuming assignment but she knew the work was important. It lead to her best-known work on variable stars on which she spent many years. She used the millions of observations made with her assistants to investigate stellar evolution, and published the book 'Stars of High Luminosity' in 1930.

She became an American citizen in 1931 and then while on tour in Europe, met the stateless Russian-born astrophysicist Sergei I. Gaposchkin in Germany. He had flead the soviet purges in Russia and now feared for the future in Nazi Germany. She went to Washington to help him get an American visa. The two were married in 1934. She appended his last name to her own. They had three children and worked together on the observation and analysis of all variable stars bigger than magnitude 10 (a measure of brightness). Their paper on the subject became the standard reference. Their insight into variable stars served as means of elucidating the structure of the galaxy and the role of variable stars in stellar evolution. Payne-Gaposchkin worked at Harvard for her entire career. While she was barred from a professorship as a woman, and relegated to low-paid research positions, she nonetheless was able to publish several more books including 'Variable Stars' (1938), 'Variable Stars and Galactic Structure' (1954), and 'The Galactic Novae' (1957)'. Shapley worked to improve her position and in 1938 she was given the title Astronomer, later changed at her request to Phillips Astronomer. In 1943 she was elected Fellow of the American Academy of Arts and Sciences.

Thanks in part to the efforts of Donald Menzel who became Director of the Harvard College Observatory in 1954, she became the first woman full professor from within the faculty at Harvard's Faculty of Arts and Sciences in 1956 and was finally paid a salary commensurate with her stature. She trained several graduate students who went on to eminent careers in astronomy. Eventually she became the department Chair, the first woman Chair at Harvard. She retired in 1966, but continued working as an Emeritus Professor of Harvard, as a staff member at the Smithsonian Astrophysical Observatory, editing books and journals for the next twenty years. As well as the books mentioned she published more than 150 papers, popular science books and an astronomy textbook. In 1977, she was awarded the highest honour of the American Astronomical Society, the Henry Norris Russell Lectureship. Payne-Gaposchkin was a trail-blazer and role model for women in the male-dominated field of astronomy, and one of the great scientists of the twentieth century. Late in life, she wrote:

Young people, especially young women, often ask me for advice. Here it is, valeat quantum. Do not undertake a scientific career in quest of fame or money. There are easier and better ways to reach them. Undertake it only if nothing else will satisfy you; for nothing else is probably what you will receive. Your reward will be the widening of the horizon as you climb. And if you achieve that reward you will ask no other. 

Wikipedia entries on Cecilia Payne-Gaposchkin (both in English and French), Meghnad Saha, the Saha ionization equation, and Absorption spectroscopy, accessed May, 2019.
Gingerich, O., Obituary - Payne-Gaposchkin Cecilia, Quarterly Journal of the Royal Astronomical Society, Vol. 23, P. 450, 1982
Smith, Elske V.P.,  Cecilia Payne-Gaposchkin, Physics Today 33, 6, 65 (1980);

Wednesday, April 10, 2019

Art The Science Profile

Wunderkammer, multimedia (93 cm x 63 cm x 8 cm), wood, paper, ink, conductive ink and thread, string, electronics, by Ele Willoughby, 2017

Art the Science, is a Canadian registered nonprofit SciArt organization which provides a platform for creators working within this emerging genre to share their practice with a global audience. They recently contacted me about my work and have just posted their profile of me here! Check it out, and all the blog as a whole - it's a wonderful collection of some of my favourite things at the place that art meets science.

Wednesday, March 20, 2019

Contemporary Renaissance Woman

Yesterday I gave a talk about my experience as an astronaut candidate for the Canadian Space Agency at Albert Campbell Library in Scarborough. Today, I'm in the Star. Online, it's 'Would-be astronaut is artist on the side, and one of a million Canadians with a side hustle.' In the print edition, it's in the Life section and called 'What drives the side hustle?' Here's what they had to say about me:

Ele Willoughby is a marine geophysicist who has a burgeoning art print business called Minouette on Etsy Canada. It’s a combination that suits her, and one she’s flexible to changing up. At the moment she is focusing on her art and is working on a book of portraits of female scientists and the stories behind their work.
“I was actually one of the astronaut candidates for the Canadian Space Agency in their recent search for an astronaut,” says Willoughby. “I’m still open to switching the balance, and being more of a scientist, and doing art on the side.”
If you're one of the people who attended my talk, thank you very much for coming out! It was lovely to speak with you and great to see there was interest from such a range of different ages of people. If you're interested in hearing my talk, you can catch it next at:

Tuesday April 2 at 6:30  pm
Coxwell/Danforth Branch
1675 Danforth Avenue
Toronto, ON M4C 5P2 

I continue to pursue the weirdest business card title combination, but basically I want to do the things that I love best and fill the world with more art and more science.

Tuesday, February 5, 2019

Red-legged Grasshopper

Red-legged Grasshopper, linocut, 7" x 4", Ele Willoughby, 2019
I made a cloud (or edition) of tiny grasshoppers! Red-legged grasshoppers are the most common grasshoppers in this part of the world. I’m made these prints for Wing Tip Press Leftovers print exchange. Printmakers exchange mini prints (< 7” x 5”) and raise money to combat hunger. So I wanted something related to hunger and my other flora and fauna sciart prints. I chose the grasshopper because it can be both an agricultural pest or a food source.

Friday, January 11, 2019

Talking about science

When I tell people - non-scientists - that I am a marine geophysicist, most of them ask me about whales. I study the ocean floor, not the life within the ocean, but I think people have heard of a marine biologist, and often have never come across a geophysicist, let alone one who works at sea. So, I spend a lot of time explaining that whales are beautiful, but I don't study whales. Once, I struggled to explain my research in French, to someone who kept me busy with questions for over an hour - but the next time we met, she asked me how the whale research was going! So, hilariously, when asked to perform at a science-themed storytelling event, I've opted to share a story about whales in a tale about when marine geophysics goes wrong. You can catch me next Monday, at the Burdock (1184 Bloor Street) for The Story Collider, a science storytelling event series and podcast, where people tell personal stories about science. You can reserve your ticket here. The stories might begin at 7:30 but seating is limited, so unless you're happier standing (closer to the bar), you'll want to arrive by 7:00.

Me (left), the marine geophysicist, in the field and some of my sciart
about the exploration of space: my linocut portrait of astronaut
Mae Jemison (above) and mathematician and Space Race aeronautical
engineer Mary Golda Ross (below) 
Last fall, I gave a talk about my experience as an astronaut candidate for the Canadian Space Agency for Science Literacy Week. Since astronauts are both scientists and science communicators, I combined an introduction to my research with my science-art, since I usually use the medium of fine art to communicate science these days. This was the first time I had an opportunity to combine these two very different pursuits in one talk! I also, of course, spoke about the extraordinary experience of the astronaut selection process and getting the opportunity to go the the Astronaut Assessment Centre. I have since given a version of this talk to a troupe of boy scouts and visiting girl scouts. I will be giving this talk two more times this year at Toronto Public Libraries. You can catch me:

March 19th at 2 pm
Albert Campbell Library
496 Birchmount Road
Toronto, ON M1K 1N8


Tuesday April 2 at 6:30  pm
Coxwell/Danforth Branch
1675 Danforth Avenue
Toronto, ON M4C 5P2