Wednesday, June 13, 2018

Interstital Intro - My portraits of Canadian Women in STEM



Featuring artwork by me, Cheryl Hamilton and Paige Blumer, Curiosity Collider's artshow Interstitial: Science Innovations by Canadian Women is on exhibit until June 22. Since I was unable to attend the Opening in Vancouver, they asked me to share a short video introduction to me and my artwork. So now, I'm sharing the video with you. Comes complete with a peek inside my studio and some of the artwork you could find there. I think I was so focused on pronouncing "electrophoresis" that I slipped up on the more common "geneticist", but it tells about the work.


The exhibit is open from 11 am to 6 pm from Tuesday to Saturday until June 22 at The Beaumont Studios gallery spaces, located at 316/326 West 5th Street, Vancouver, BC, V5Y 1J0.

Thursday, June 7, 2018

Redbud and the Bees

Redbud and the Bees, 18" x 24", linocut with collaged washi papers by Ele Willoughby, 2018
Proof of my Eastern Carpenter Bee linocut and block
I've been working on a new artwork about urban wildlife. Creature Conserve is a non-profit outreach organization which brings artists and scientists together to "foster sustained and informed support for animal conservation," and they posted a call for artists for their Urban Wildlife: Learning to Co-exist exhibit at the Rhode Island School of Design (RISD) at the end of July and through August. Because of my on-going work on native bees, the first thing I thought about were bees in the city. The exhibit aims to get artists to collaborate with scientists and use their artworks to explore the biology and ecology of species and the way they interact with humans. Specifically, artists are invited to explore themes of how ecosystems change in time and space, how wildlife and humans may displace each other homes, the visibility or invisibility of wildlife in the city, the rhythms of animal life and their health. I'm well aware of how our native bees have been displaced and their ranges have changed through time, and also how they can be invisible to people in the city, who often are only aware of the existence of honeybees and maybe bumblebees, so I thought they would be an apt choice.

My redbud linocuts on various pink washi papers
I remembered the urbanredbud citizen science project here in Toronto. Local U of T doctoral candidate Charlotte de Keyzer is working with the public to gather data on flowering times of Eastern redbud trees (Cercis canadensis) and their pollinators using bee nest boxes and traps. She and her collaborators are particularly interested in how climate change and urbanization effect these trees and specifically the timing of their emergence and peak activity. Eastern redbud were not really known in Toronto even 30 years ago, but between climate change and its growing popularity as an ornamental landscape tree, they have became fairly common in the city and important for urban bee diversity. Local wild bees are attracted to this early flowering tree covered in pink flowers, and some also use its leaves in building their nests. Since the project addresses changes in the environment over time because of climate change and urbanization, and since it seeks to engage the public, I thought it might be a good fit and that Charlotte de Keyzer might be open to collaborating with me, and indeed she was! I asked her some questions about which bees they observe in their traps, hoping to connect this to my existing collection of native bee lino blocks, and told her about the aims and themes of the exhibit. It turns out that redbud trees are indeed popular with some of my own favourite (and previously depicted) native bees. Their early results show that amongst the most common bee visitors in Toronto foraging on redbuds are Osmia lignaria (blue orchard bee), Colletes inaequalis (polyester bee), and Xylocopa virginica (eastern carpenter bee). Leafcutters also use the leaves to build nests (though they do not yet have information on which species of leafcutter are actually doing the cutting). In my artwork I show flowering redbud branches, the small blue O. lignaria, a Megachile relativa leafeater bee (I took the liberty of simply choosing this local bee) at the top along with a telltale round hole in a leaf, and the X. virginica in the middle.

It was Charlotte's suggestion that I focus on the eastern carpenter bee. Like the redbuds themselves, the eastern carpenter bee is at the northernmost end of its range, which is advancing northward with climate change and aided by urbanization (because cities are warmer due to the urban heat island effect, which likely helps them survive our winters). In fact, since people are planting redbud trees in their gardens, we're inadvertently aiding migration of both tree and bee. She points out that "redbuds are now starting to naturalize in ravines and woodlots across southern Ontario." What brings the X. virginica into conflict with its human neighbours is that female carpenter bees of course, build nests by boring holes into untreated wood structures, including outdoor furniture and buildings. Thus these bees are often considered pests by home owners and we are still working on 'learning to co-exist.' To emphasis this conflict, I printed weathered wood with round holes like thoses bored by eastern carpenter bees.

If you live in Toronto and own or know of a nearby redbud tree, you too can take part in the urbanredbud citizen science project. Check it out here.

I got a lot of positive feedback on my linocut of the redbud before I added the bees, so I think I will also make a simpler piece of the tree branches alone. 

Wednesday, June 6, 2018

Mathematician Emmy Noether, Symmetries and Conservation Laws

Emmy Noether, linocut, 11" x 14", Ele Willoughby, 2018
Emmy Noether (1882-1935, pronounced NER-ter) has long been on my "to do" list of scientist portraits. Noether's Theorem is one of the most fundamental and profound theories in physics and I think it's impossible to overstate its importance. In some ways it's astonishing that Noether's Theorem wasn't discovered until one century ago in 1918 and in some ways its true import wasn't clear until much later. The theorem is so powerful that I struggled with how I could depict it visually. It can be written in many different ways. I could have reproduced her actual equations as her paper is widely available in the original German and in English translation. But, my goal with my art is to communicate science, and even writing a single equation cuts the potential audience. I hope that expressing ideas visually through geometry is more accessible to more people. So, in my portrait, I chose to depict a young Emmy in front of a blackboard with a more simple formulation of her theorem and three specific applications of it, shown schematically, using pictures and geometry. In simple terms, Noether's theorem shows us that any symmetry of a system (say, a given problem in physics, like a ball rolling or a molecule or a solar system or the universe itself) implies a conservation law.

The three examples I give are probably the best known, but just give a hint of the power of this theorem. If you do an experiment and then move three steps to the right and repeat it, you usually expect the same results. In general, a lot of things will have this translational symmetry. Noether's Theorem shows that if you get the same result in two reference frames which are shifted from one another, your system conserves momentum (p with an arrow, as a vector quantity). Thus, we have conservation of momentum in any inertial frame of reference. That means that any place where we don't have to worry about any significant differences from acceleration or gravity, we can solve physics problems by simply knowing that the total momentum never changes. In my print I show a set of x, y, z axes moved (translated) to get a new set of axes x', y' and z' and then the quantity p. Similarly, if your system doesn't care if you rotate it or how it's oriented in space, the conserved quantity is angular momentum (L with an arrow, as a vector quantity); hence in my print, I show a set of x, y, z axes rotated x', y' and z' along with conserved quantity L. Your system itself doesn't need to be symmetric. A lumpy asteroid conserves angular momentum every bit as much as a planetary system made of perfect spheres. If it's irrelevant to results whether you do your experiment at 3:00 or 6:25 then your system has a time symmetry and conserves energy (E). This method of using observed symmetries of something and then finding things which are invariant allows us to easily solve all sorts of problems in physics. Further, using observed symmetries of the Universe allows us to know which things are invariant, know more about the nature of reality and assess any new theories by checking whether they also produce the same conserved quantities.*

Here's a nice video which talks about Noether's Thereom.




Her male colleagues Pavel Alexandrov, Albert Einstein, Jean Dieudonné, Hermann Weyl, and Norbert Wiener described Noether as the most important woman in the history of mathematics - a compliment which betrays the biases of the times in comparing her only to those of the same sex. She was quite simply, one of the most important mathematicians period, and her impact on physics was tremendous. (My portrait betrays my own biases, focusing on the physics of Noether's Theorem, rather than her contributions to mathematics... but there you are. I'm a physicist by training, not a mathematician).

Born in Erlangen, Germany, Emmy Noether initially planned to teach girls English and French, rather than follow in her father's footsteps and become a professor of mathematics. But ultimately, she choose to study mathematics at the University of Erlangen, where he was a lecturer. Pursuing mathematics was unconventional for a woman; the university had recently declared that mixed-sex education would "overthrow all academic order" and as one of 2 female students (out of 986) she was only able to audit classes at the discretion of professors. She nonetheless managed to pass the graduation exam in 1903 and was granted a degree. She spent the winter semester at the University of Göttingen attending lectures from astronomer Karl Schwarzschild and mathematicians Hermann Minkowski, Otto Blumenthal, Felix Klein, and David Hilbert, before returning to Erlanger. She completed a dissertation supervised by Paul Gordan, On Complete Systems of Invariants for Ternary Biquadratic Forms (1907) using the "computational" approach to invariants, later superseded by Hilbert's more abstract and general approach. She later referred to this well-received thesis and the first few similar papers as "crap". She continued to work at the university for 7 years, but as a woman she was excluded from an academic position and in fact forced to worked without pay.

In 1915 she was recruited to come to the renown University of Göttingen and work with famed mathematicians David Hilbert and Felix Klein. However, some philologists and historians in the philosophical department protested that a woman must not become a Privatdozent, an additional post-doctoral rank required in Germany and certain other European nations to act as a university professor. Famously, a faculty member protested "What will our soldiers think when they return to the university and find that they are required to learn at the feet of a woman?" but Hilbert defended her indignantly, with one of my favourite lines in response to such entrenched academic sexism: "I do not see that the sex of the candidate is an argument against her admission as privatdozent. After all, we are a university, not a bath house." There she still faced hurdles and had to rely on her family to support her financially, as she was unpaid and could only lecture under Hilbert's name until 1919  despite already having published her eponymous Noether's Theorem in 1918! After Einstein published his theory of general relativity in 1915 and Noether responded by applying her invariance work to some of its complexities and this eventually lead her to prove her famous theorem. As Einstein wrote when he read her paper, "Yesterday I received from Miss Noether a very interesting paper on invariants. I'm impressed that such things can be understood in such a general way. The old guard at Göttingen should take some lessons from Miss Noether! She seems to know her stuff."

The end of WWI and German Revolution of 1918-1919 lead to social change and increased rights for women. Her habilitation was approved and she obtained the rank of Privatdozent in 1919. Three years later she was promoted to an untenured professor (nicht beamteter ausserordentlicher Professor) but her work remained unpaid until the next year when she was finally granted a special position (Lehrbeauftragte für Algebra).
 
Until 1919 she focused on theories of algebraic invariants and number fields. While her incredible contribution to physics had already occurred in 1918, mathematicians remember her for her central role in the 20th century revolution in mathematics, the development of abstract algebra, and her prolific work including Ring Theory from 1920 to 1926, as well as Noetherian rings, Noether groups, Noether equations, Noether modules and more. Her revolutionary 1921 paper Theory of Ideals in Ring Domains is considered a classic and objects which satisfy the ascending chain condition are named Noetherian, in her honour. In the final stage of her career, she focused on noncommutative algebras and hypercomplex numbers and united the representation theory of groups with the theory of modules and ideals. She was a leader in the strong University of Göttingen math department until 1933. Her colleague Dutch mathematician B. L. van der Waerden made her work the foundation of the second volume of his influential 1931 textbook, Moderne Algebra; it was typical of her to allow students and colleagues to receive credit for her ideas. She supervised more than a dozen doctoral students. She was known for her patient guidance but insistence on accuracy. van der Waerden wrote that she was, "Completely unegotistical and free of vanity, she never claimed anything for herself, but promoted the works of her students above all." She learned to live frugally, having gone so long without a salary, and took no concern about her manners, housework or appearance. She used her lecturers as a time for spontaneous discussions of the latest mathematics with students and a place to explore ideas (many of which would become major publications of those students). She spent the winter of 1928–29 at Moscow State University, working with P. S. Alexandrov. She was interested in and supportive of the Russian Revolution and her political opinions got her evicted from her lodging back in Germany when students there complained of living with "a Marxist-leaning Jewess". In 1932, she won the received the Ackermann–Teubner Memorial prize for her contributions to mathematics, which came with 500 Reichsmarks and she gave the plenary address at the 1932 International Congress of Mathematicians in Zürich, a sign of her international stature in the field. Colleagues complained that she was however never elected to the Göttingen Gesellschaft der Wissenschaften (academy of sciences) or promoted to full professor. Within a year Nazi Germany moved to dismiss her and all Jewish academics from university positions. The German Student Association, aided by one of Noether's own former students, a privatdozent named Werner Weber, led the attack on Jews at the University of Göttingen. She merely laughed when students showed up dressed as Hilter's brownshirts. Dedicated to her students, she invited them to her home to discuss math and their plans for the future. Herman Weyl wrote "Emmy Noether—her courage, her frankness, her unconcern about her own fate, her conciliatory spirit—was in the midst of all the hatred and meanness, despair and sorrow surrounding us, a moral solace." Emmy Noether was able to find a position at Bryn Mawr College in Pennsylvania in 1933, where she finally gained the appreciation she deserved. In 1934 she lectured at the Institute for Advanced Study in Princeton, but remarked that she was not welcome at the "men's university, where nothing female is admitted." Tragically, she died 4 days after surgery to remove an ovarian cyst in 1935 when she was only 53.

Noether's theorem remains fundamental to physics, and has been especially vital to particle physics in the decades since her death. Her originality in mathematics was beyond compare and in Weyl's words she "changed the face of algebra by her work."

References
Emmy Noether, wikipedia article access June 6, 2018

Noether E (1918). "Invariante Variationsprobleme". Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse. 1918: 235–257.

M. A. Tavel's English translation of Noether's Theorems (1918)

Matthew R. Francis, Mathematician to know: Emmy Noether, Symmetry Magazine, June 18, 2015.

Natalie Angier, The Mighty Mathematician You’ve Never Heard Of, The New York Times, March 26, 2012

*Now, if you're interested in the equation itself here's one good online explation (if say, you have most of an undergraduate degree in physics or more). A more intuitive a bit more straightforward explanation is here. The original paper is here and can be found in translation here